赵霞:上海对外经贸大学统计与信息学院教授,理学博士,应用经济学博士后,博士生导师。研究方向:金融统计、风险管理与精算。
F831.5/F832.5
本文受国家自然科学基金“相依死亡率模型下的家庭最优消费—投资—保险/退休问题”(项目编号:11971301);统计与数据科学前沿理论及应用教育部重点实验室开放课题“复杂数据相依网络构建及其在金融资产配置中的应用研究”(项目编号:KLATASDS2210);上海市哲学社会科学规划基金项目“基于能源金融化视角下的中国原油期货市场风险度量、传染及其管理”(项目编号:2022EJB006)的资助
本文从尾部风险角度,利用溢出系数网络和ΔCoVaR溢出网络研究了全球16个国家(地区) 的经济政策不确定性 (EPU) 与股票市场之间的溢出效应。首先通过系统性风险贡献指数和系统性风险暴露指数分析各节点风险吸收与发散能力,然后采用平面极大滤波图(PMFG) 过滤冗余信息以获得仅保留关键路径的 ΔCoVaR 溢出网络图,探讨尾部风险溢出的存在性、方向性、强度特征及社群特征问题。研究表明:EPU 与股票市场之间存在双向的非对称尾部风险溢出效应,俄罗斯、印度和中国香港等经济体的外溢冲击更明显;从溢出系数角度,股票市场更容易成为风险的溢出者,而从极端风险溢出值角度,EPU 节点的尾部风险传播强度及范围要显著大于股票市场,更易成为风险集聚点;EPU 与股票市场的风险外溢具有社群现象,社群内存在核心风险源,比如巴西、俄罗斯、中国香港及印度的 EPU 等。对中国这一“政策市”而言,把 EPU 纳入金融宏观审慎指标评估体系,多层次、全方位地实时掌握 EPU 可能带来的风险、风险传播路径及风险来源核心圈等问题具有重要意义。
From the perspective of tail risk, this paper examines the spillover effects between economic policy uncertainty (EPU) and stock markets in 16 countries (regions) by employing the spillover-coefficient network and ΔCoVaR spillover network. Firstly, the risk absorption and diffusion capabilities of each node are analyzed through the systematic risk contribution index and systematic risk exposure index. Then, the Planar Maximally Filtered Graph (PMFG) is used to filter redundant information and obtain the ΔCoVaR spillover network that retains only the critical paths. Lastly, the study explores the existence, direction, strength and community characteristics of tail risk spillover. The findings indicate that there is a bi-directional and asymmetric tail risk spillover effect between global EPU and stock markets, with more pronounced outward shocks in economies such as Russia, India, and Hong Kong SAR of China. From the perspective of spillover coefficient, stock markets are more likely to be the risk-spillover. However, in terms of extreme risk spillover values, the intensity and scope of tail risk transmission of EPU nodes are significantly greater than those of the stock market, making them more susceptible to risk accumulation. The spillover between EPU and stock market exhibits a community phenomenon, with core risk sources within the community, such as the EPU of Brazil, Russia, Hong Kong SAR of China, and India. For the “policy market” in China, it is of great significant to include the economic policy uncertainty (EPU) in the assessment system of financial Macro-prudential indicator. This enables a multi-level and comprehensive real-time understanding of the risks, risk transmission paths, and core sources of risks that may be brought by EPU.
赵霞,李会会.经济政策不确定性与股票市场存在双向溢出效应吗?——基于尾部风险网络的视角*[J].上海对外经贸大学学报,2023,(5):92-106.
复制